Sequence : Nsp10

Total row(s): 1
Select item(s)
Key Findings
Original Article
(hover to see details)
62 mutations identified, including 30 mis-sense mutations, in 22 Moroccan patient isolates showed that Spike_D614G and NSP12_P323L mutations were present in all the analyzed sequences, whereas N_G204R and N_R203K were present in 9 sequences. 33558859
(Biosaf Health)
PMID
33558859
Date of Publishing: 2021 Feb 3
Title Genetic diversity and genomic epidemiology of SARS-CoV-2 in Morocco
Author(s) nameBadaoui B, Sadki K et al.
Journal Biosaf Health
Impact factor
Cant find
Citation count: 1

Structure : Nsp10

Total row(s): 5
Select item(s)
Key Findings
Original Article
(hover to see details)
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2 RNA genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure was studied by cryo-electron microscopy to a high resolution. 34029205
(Science)
PMID
34029205
Date of Publishing: 2021 Jun 18
Title Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) nameBhatt PR, Scaiola A et al.
Journal Science
Impact factor
20.57
Citation count: 2
Date of Entry 2021 Aug 11
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2 RNA genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure was studied by cryo-electron microscopy. The rabbit 80S ribosome is stalled close to the mutated SARS-CoV-2 slippery site by a pseudoknot. 34029205
(Science)
PMID
34029205
Date of Publishing: 2021 Jun 18
Title Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) nameBhatt PR, Scaiola A et al.
Journal Science
Impact factor
20.57
Citation count: 2
Date of Entry 2021 Aug 11
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2 RNA genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure. By cryo-electron microscopy the structure of rabbit 80S ribosome in complex with eRF1 and ABCE1, stalled at the STOP codon in the mutated SARS-CoV-2 slippery site is studied. 34029205
(Science)
PMID
34029205
Date of Publishing: 2021 Jun 18
Title Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) nameBhatt PR, Scaiola A et al.
Journal Science
Impact factor
20.57
Citation count: 2
Date of Entry 2021 Aug 11
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2 RNA genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure. Here, rabbit 80S ribosome colliding in another ribosome stalled by the SARS-CoV-2 pseudoknot is structurally characterized. 34029205
(Science)
PMID
34029205
Date of Publishing: 2021 Jun 18
Title Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) nameBhatt PR, Scaiola A et al.
Journal Science
Impact factor
20.57
Citation count: 2
Date of Entry 2021 Aug 11
 Structural characterization of SARS-CoV-2 nsp10 in its unbound form and its behavior in a liquid. 33036230
(Int J Mol Sci)
PMID
33036230
Date of Publishing: 2020 Oct 6
Title Crystal Structure of Non-Structural Protein 10 from Severe Acute Respiratory Syndrome Coronavirus-2
Author(s) nameRogstam A, Nyblom M et al.
Journal Int J Mol Sci
Impact factor
4.21
Citation count: 1

Drugs : Nsp10

Total row(s): 1
Select item(s)
Key Findings
Original Article
(hover to see details)
Identification of a potent inhibitor of Methyltransferase, Endoribonuclease, Phosphatase and Main Protease enzymes of SARS CoV-2 by coumarin derivatives using insilico approach. The in silico studies were performed on maestro 12.0 software (Schrodinger LLC 2019, USA). Two thousand seven hundred fifty-five biologically active coumarin derivative was docked with above receptor proteins of SARS CoV-2. 32835632
(J Biomol Struct Dyn)
PMID
32835632
Date of Publishing: 2020 Aug 24
Title In silico validation of coumarin derivatives as potential inhibitors against Main Protease, NSP10/NSP16-Methyltransferase, Phosphatase and Endoribonuclease of SARS CoV-2
Author(s) name Maurya AK, Mishra N.
Journal J Biomol Struct Dyn
Impact factor
3.22
Citation count: 2
Date of Entry 2021 Sep 5